
Potential projection operators in the theory of the fractional quantum Hall effect

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2000 J. Phys.: Condens. Matter 12 6877

(http://iopscience.iop.org/0953-8984/12/30/316)

Download details:

IP Address: 171.66.16.221

The article was downloaded on 16/05/2010 at 06:36

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/12/30
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter 12 (2000) 6877–6885. Printed in the UK PII: S0953-8984(00)13011-5

Potential projection operators in the theory of the fractional
quantum Hall effect

I F I Mikhail and T G Emam
Department of Mathematics, Faculty of Science, Ain Shams University, Cairo, Egypt

Received 4 April 2000

Abstract. The projection operators that project the potential energy of electron interactions onto
the lowest Landau level of a fractional quantum Hall state are considered for both disk and spherical
geometries. The study has been performed by using the Laughlin, the quasi-hole and the quasi-
electron wave functions. In the case of spherical geometry, the form of the coordinate-operator
transformation obtained in a recent article has been amended. The results obtained are expected to
be useful in the calculation of the quasi-hole energy, the quasi-electron energy and the energy gap.

1. Introduction

The fractional quantum Hall effect (FQHE) is one of the most remarkable phenomena
discovered in recent years. Considerable effort and much speculation have been centred on
investigating such a phenomenon from both the theoretical and experimental points of view
(Tsui et al [1], Laughlin [2], Jain [3]). The limits of low temperatures and strong magnetic
fields tend to restrict the electrons in two dimensions to within the lowest Landau level due to
the existence of an energy gap. Girvin and Jach [4] and Girvin [5] studied the Hilbert space of
the analytic eigenfunctions of the lowest Landau level in a FQH state. Furthermore, Girvin and
Jach [4] developed a simple method for the projection of the quantum operators representing
the potential energy of electron interactions onto this space. Their study was performed for the
disk geometry, using only the Laughlin wave function. In the present work we have extended
their results for harmonic interactions by using the quasi-hole and the quasi-electron wave
functions. The results showed that these wave functions are not eigenstates of the harmonic
interaction operator, unlike the Laughlin wave function. However, the expressions obtained
are useful in calculating expectation values for the quasi-hole energy, the quasi-electron energy
and the energy gap.

We have further applied the Girvin and Jach projection approach in the theory of general
composite particles and deduced different eigenvalues from those obtained in Asselmeyer and
Keiper [6]. We have concluded that the difference is due to the fact that the ground states and
wave functions are not identical in the two treatments.

Recently, Alaverdian and Bonesteel [7] have derived an analogous result for the potential
projection operator in the case of spherical geometry. However, we found that their result is
correct only for projection differential operators of first order. As regards higher orders, we
have amended their results and obtained the correct expression for the projection operator. We
have further obtained the corresponding projection operators on a sphere for harmonic inter-
actions and for 1/r2 and Coulomb potentials. In the case of harmonic interaction, we have
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performed the projection procedure by using the Laughlin and quasi-hole wave functions. The
Laughlin wave function was found to be an eigenstate for the harmonic potential and the cor-
responding eigenvalue has been obtained. For the quasi-hole wave function we have derived
an expression which could be used to calculate an expectation value for the quasi-hole energy
in spherical geometry.

The present work is arranged in the following way.
In sections 2 and 3 we have dealt with the projection techniques in disk and spherical

geometries respectively. The comparison with the recent results of Asselmeyer and Keiper [6]
is finally given in section 4.

2. The Hilbert space of disk geometry

In the lowest Landau level the eigenfunctions of the kinetic energy Hamiltonian

H0 =
∑
i

1

2me

∣∣∣∣P i +
e

c
Ai

∣∣∣∣
2

(1)

have the form


[z] = ψ[z] exp

[
−1

4

∑
i

|zi |2
]

(2)

where [z] ≡ (z1, z2, . . . , zN), ψ is a polynomial in the N variables zk ≡ xk − iyk , and N is
the number of electrons. Girvin and Jach [4] defined a Hilbert space on the set of the complete
analytic functions. The exponential factor in (2) was removed by including it in the measure
of the inner product. The inner product was thus defined as

(ψ, g) =
∫

dµ[z] ψ∗[z]g[z] (3)

where

dµ[z] =
N∏
i=1

1

2π
e−|zi |2/2 dxi dyi. (4)

Girvin and Jach [4] have further shown that the projection V̂ of the potential operator onto the
lowest Landau level can be obtained by ordering each term such that the z∗s all sit to the left
and then are replaced by 2 ∂/∂z, i.e. we use the following rules:

z∗ −→ 2
∂

∂z
(5)

and

V [z∗, z] −→ N̂V

[
2

∂

∂z
, z

]
(6)

where N̂ is the normal ordering operator that keeps all the derivatives to the left.
In the case of harmonic interaction,

V [z∗, z] = 1

2
λ2

N∑
i<j

(z∗
i − z∗

j )(zi − zj ) (7)

and accordingly

V̂ = λ2
N∑

i<j

(
∂

∂zi
− ∂

∂zj

)
(zi − zj ). (8)
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For the Laughlin wave function,

ψm[z] =
N∏

k<�

(zk − z�)
m. (9)

Girvin and Jach [4] proved that consequently

V̂ ψm = λ2N(N − 1)

(
1 +

mN

2

)
ψm. (10)

They thus concluded that Laughlin’s wave function is an exact eigenfunction of the harmonic
interaction. In the present section we extend the work of Girvin and Jach [4] and use the
quasi-hole and the quasi-electron wave functions 
h

m, 
e
m. The use of these wave functions is

justified since they are eigenfunctions of H0 with the lowest Landau energy as an eigenvalue.
Also, we consider, for simplicity, the case where the quasi-particles are created at the origin.
It then follows after removing the exponential term and dropping a factor of 2 from 
e

m that

ψh
m =

∏
�

z�

N∏
k<t

(zk − zt )
m (11)

and

ψe
m =

∏
�

∂

∂z�

∏
k<t

(zk − zt )
m. (12)

Moreover, for the harmonic interaction (equation (8)) we have

V̂ ψ = λ2N(N − 1)ψ + λ2
∑
i<j

(zi − zj )

(
∂

∂zi
− ∂

∂zj

)
ψ (13)

where ψ stands for either ψh
m or ψe

m. It can further be shown that

∂

∂zi
ψh

m = 1

zi
ψh

m + m
∑
r �=i

1

zi − zr
ψh

m (14)

and
∂

∂zi
ψe

m = m
∑
r �=i

[ −2

(zi − zr)3

∏
��=i,r

∂ψm

∂z�
+

1

(zi − zr)2

∏
��=r

∂ψm

∂z�

− 1

(zi − zr)2

∏
��=i

∂ψm

∂z�
+

1

zi − zr
ψe

m

]
(15)

where ψm is the Laughlin wave function and
∂ψm

∂zi
= m

∑
r �=i

1

zi − zr
ψm. (16)

On substituting (14), (15) in (13) and making use of the relation (Girvin and Jach [4])∑
i<j

∑
r �=i,j

[
zi − zj

zi − zr
− zi − zj

zj − zr

]
= N(N − 1)(N − 2)

2
(17)

we find after some algebra that

V̂ ψh
m = λ2

[
N(N − 1)

(
1 +

mN

2

)
− I

]
ψh

m (18)

where

I =
∑
i<j

(zi − zj )
2

zizj
=

∑
i<j

(
zi

zj
+

zj

zi
− 2

)
= −N(N − 1) +

∑
i<j

(
zi

zj
+

zj

zi

)
(19)
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and

V̂ ψe
m = λ2N(N − 1)

(
1 +

mN

2

)
ψe

m

+ 2mλ2
∑
i<j

[ −2

(zi − zj )2

∏
��=i,j

∂ψm

∂z�
+

1

(zi − zj )

( ∏
��=j

∂ψm

∂z�
−

∏
��=i

∂ψm

∂z�

)]

+ mλ2
∑
i<j

∑
r �=i,j

(zi − zj )

[
−2

(
1

(zi − zr)3

∏
��=i,r

∂ψm

∂z�
− 1

(zj − zr)3

∏
��=j,r

∂ψm

∂z�

)

+

(
1

(zi − zr)2
− 1

(zj − zr)2

) ∏
��=r

∂ψm

∂z�

−
(

1

(zi − zr)2

∏
��=i

∂ψm

∂z�
− 1

(zj − zr)2

∏
��=j

∂ψm

∂z�

)]
. (20)

The above results show thatψh
m, ψe

m are not exact eigenfunctions of V̂ , unlike theψm. However,
equations (18), (20) can be used to calculate expectation values of the quasi-hole energy, the
quasi-electron energy and the energy gap.

3. The Hilbert space of spherical geometry

The representation of the FQHE on a sphere has the advantage that the wave functions are fully
translationally invariant. The first treatment along this direction was given by Haldane [8].
He used the spinor coordinates to determine the position of the electron on the surface of the
sphere. Recently, Alaverdian and Bonesteel [7] utilized instead the stereographic coordinates

z = x + iy = tan

(
θ

2

)
exp(−iφ) (21)

together with the Wu–Yang gauge [9]

A = h̄cS

eR

1 − cos θ

sin θ
eφ. (22)

θ and φ are the polar and azimuthal angles, eφ is a unit vector in the direction perpendicular
to the meridian plane, R is the radius of the sphere and 2S denotes the number of flux quanta
piercing the surface of the sphere. The latter approach has the advantage that the wave functions
of the lowest Landau level take a similar form to equation (2) in the case of the disk geometry
but with the exponential factor being replaced by

∏
i (1+|zi |2)−S . We can thus present a Hilbert

space with an inner product defined in the same way as in (3). But the measure in this case
will be given by

dµ[z] =
N∏
i=1

dxi dyi

(1 + |zi |2)2S+2
(23)

where a normalization factor has been omitted.
The relation analogous to (5) was also obtained in Alaverdian and Bonesteel [7]. They

found that (
z∗

1 + |z|2
)n

−→ (2S + 2 − n)!

(2S + 2)!

dn

dzn
. (24)

However, we believe that this relation is slightly in error. The correct relation should take the
form (

z∗

1 + |z|2
)n

−→ (2S + 1)!

(2S + n + 1)!

dn

dzn
. (25)
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The proof of (25) follows directly from〈
ψ,

dng

dzn

〉
= (2S + n + 1)!

(2S + 1)!

〈
ψ,

(
z∗

1 + |z|2
)n

g

〉
. (26)

The two transformations (24), (25) agree only for n = 1, as they both give

z∗

1 + |z|2 −→ 1

2S + 2

d

dz
. (27)

Now, in order to obtain the operator V̂ which projects a potential interaction
V [z∗/(1 + |z|2), z] onto the lowest Landau level we have to keep all the terms z∗/(1 + |z|2) to
the left before using (25). In the rest of this section we proceed to apply this procedure for
some specific interactions. To the best of our knowledge this has not been done before. We
start from the harmonic interaction for which the potential energy takes the form

V = 1

2
λ2

∑
i<j

rij · rij

= 2R2λ2
∑
i<j

[
z∗
i

1 + |zi |2
(

1 − z∗
j

1 + |zj |2 zj
)

− z∗
j

1 + |zj |2
(

1 − z∗
i

1 + |zi |2 zi
)]

× (zi − zj ). (28)

The second step in (28) was obtained by using the following form for the chord distance
between the two points i, j on the surface of the sphere:

rij = 2R|zi − zj |√
(1 + |zi |2)(1 + |zj |2)

(29)

in addition to the identity

1

1 + |zi |2 = 1 − z∗
i

1 + |zi |2 zi . (30)

The application of (27) in (28) yields

V̂ = R2λ2

S + 1

[
V̂1 +

1

2(S + 1)
V̂2

]
(31)

where

V̂1 =
∑
i<j

(
∂

∂zi
− ∂

∂zj

)
(zi − zj )

V̂2 =
∑
i<j

∂2

∂zi ∂zj
(zi − zj )

2.

(32)

The first part V̂1 is identical with the operator obtained in the case of a disk (equation (8)).
The projection onto the lowest Landau level can be performed by using the Laughlin wave
function. In stereographic coordinates and within the Hilbert space considered, the Laughlin
wave function is given by [7]

ψm[z] =
∏
k<�

(zk − z�)
m S = 1

2
m(N − 1). (33)

We consequently find from (8) and (10) that

V̂1ψm = N(N − 1)

(
1 +

mN

2

)
ψm. (34)
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It can further be shown by using (16), (17) together with

∂2ψm

∂zj ∂zi
= m

(zi − zj )2
ψm + m2

(∑
r �=i

1

zi − zr

)( ∑
r ′ �=j

1

zj − zr ′

)
(35)

that

V̂2ψm = −
[
(2 + 3m)

N(N − 1)

2
+ mN(N − 1)(N − 2)

]
ψm + m2V̂ ′

2ψm (36)

where

V̂ ′
2 =

∑
i<j

(zi − zj )
2

(∑
r �=i

1

zi − zr

)( ∑
r ′ �=j

1

zj − zr ′

)

= − N(N − 1)

(
N − 3

2

)
+

∑
i<j

∑
r �=i,j

∑
r ′ �=i,j,r

(zi − zj )
2

(zi − zr)(zj − zr ′)
. (37)

We have calculated the last term in (37) by utilizing a similar procedure to that used in Girvin
and Jach [4] to obtain (17). We have found that∑

i<j

∑
r �=i,j

∑
r ′ �=i,j,r

(zi − zj )
2

(zi − zr)(zj − zr ′)
= −N(N − 1)(N − 2)(N − 3)

4
(38)

and consequently

V̂ ′
2 = −N2(N − 1)2

4
. (39)

On substituting (39) in (36) and substituting the resulting equation in (31) we obtain

V̂ ψm = R2λ2

S + 1

{
N(N − 1)

(
1 +

mN

2

)

− N(N − 1)

2(S + 1)

[
1 + m

(
N − 1

2

)
+

m2N(N − 1)

4

]}
ψm. (40)

But S = 1
2m(N − 1) and R = √

S in units of the magnetic length. It can thus be shown after
some manipulation that

V̂ ψm = λ2m

2[m(N − 1) + 2]
N(N − 1)2

(
1 +

mN

2

)
ψm. (41)

The above result shows that Laughlin’s wave function is still an exact eigenfunction of the
harmonic interaction on a sphere.

Also, according to Alaverdian and Bonesteel [7] the quasi-hole wave function can be taken
in the same form as (11), save that z stands now for the stereographic coordinate. Moreover,
V̂1ψ

h
m is given by (18) with λ2 being omitted. As regards the operator V̂2, we use (14) in

addition to
∂2

∂zj ∂zi
ψh

m =
[

1

zizj
+

m

(zi − zj )2
+

m

zi

∑
r �=j

1

zj − zr

+
m

zj

∑
r �=i

1

zi − zr
+ m2

(∑
r �=i

1

zi − zr

)( ∑
r ′ �=j

1

zj − zr ′

)]
ψh

m. (42)

It can then be shown by utilizing (17), (38) and after some lengthy but straightforward calc-
ulations that

V̂2ψ
h
m =

{
− N(N − 1)

[
1 + m

(
N − 1

2

)
+ m2 N(N − 1)

4

]
+ (3 + m)I + mJ

}
ψh

m (43)
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where

J =
∑
i<j

∑
r �=i,j

(zi − zj )
2

[
1

zi(zj − zr)
+

1

zj (zi − zr)

]
. (44)

Consequently, we substitute (18), (43) in (31) and use the two relations S = 1
2m(N − 1),

R2 = S to finally obtain

V̂ ψh
m = Sλ2

S + 1

[
1

2
N(N − 1)

(
1 +

mN

2

)
− I

(
1 − 3 + m

2(S + 1)

)
+

m

2(S + 1)
J

]
ψh

m. (45)

The two terms I, J prevent the quasi-hole wave function ψh
m from being an eigenfunction of

the projection potential V̂ . However, equation (45) may be used to calculate an expectation
value of the quasi-hole energy.

The above calculations have been performed for the harmonic interaction. As regards an
interaction potential of the form 1/r2, we have

V =
∑
i<j

1

r2
ij

= 1

4R2

∑
i<j

(1 + |zi |2)(1 + |zj |2)
(z∗

i − z∗
j )(zi − zj )

= 1

4R2

∑
i<j

∫ ∞

0
dλ exp

[−λ(z∗
i − z∗

j )(zi − zj )

(1 + |zi |2)(1 + |zj |2)
]
. (46)

The projection operator is, then, given by

V̂ = 1

4R2

∑
i<j

N̂

∫ ∞

0
dλ exp

[ −λ

2(S + 1)

(
V̂1 +

V̂2

2(S + 1)

)]
(47)

where V̂1, V̂2 are the two operators given by equation (32) and N̂ is the normal ordering operator
that keeps all the derivatives to the left.

Similarly, for the Coulomb potential

V =
∑
i<j

1

rij
= 1

2R

∑
i<j

√
(1 + |zi |2)(1 + |zj |2)
(z∗

i − z∗
j )(zi − zj )

= 1

2R
√

π

∑
i<j

∫ ∞

0
dλ exp

[−λ2(z∗
i − z∗

j )(zi − zj )

(1 + |zi |2)(1 + |zj |2)
]

(48)

and

V̂ = 1

2R
√

π

∑
i<j

N̂

∫ ∞

−∞
dλ exp

[ −λ2

2(S + 1)

(
V̂1 +

V̂2

2(S + 1)

)]
. (49)

Results analogous to (47), (49) were obtained in Girvin and Jach [4] for the disk geometry.
The difficulty in using these results arises due to the presence of the normal ordering operator, N̂ .

4. Comparison with other approaches

Recently, Asselmeyer and Keiper [6] investigated the FQHE by considering a model in which
the interaction potential V (r) was assumed to arise due to an average charge e distributed on
a homogeneous disk with radius �r(B) and thickness �d . The solution of Poisson’s equation
gives

V (r) = −me

2
ω2

0r
2 (50)



6884 I F I Mikhail and T G Emam

where

ω2
0 = 2e2

εme�d�2
r (B)

(51)

and ε is the dielectric constant of the medium. Asselmeyer and Keiper [6] consequently
solved the Schrödinger equation of a single electron with the potential energy given by (50).
The energy eigenvalues were found to be

E′
nm = h̄ω̃

(
n +

|m| + 1

2
+

m

2

ωc

ω̃

)
. (52)

Here, the cyclotron frequency ωc = eB/mec, and

ω̃2 = ω2
c − 4ω2

0 = e2B

c2m2
e

(B − Bc) (53)

where n = 0, 1, 2, . . . and m = −γ, . . . , 0, 1, . . .. If the interaction potential is neglected
entirely, then ω0 = 0, ω̃ = ωc and the degeneracy of the Landau levels arises from the
negative values of m. Thus γ denotes the degree of degeneracy of these levels.

The energy eigenvalues can alternatively be obtained by applying the Girvin and Jach [4]
projection approach to a disk. For this purpose we put V (r) in the form

V (r) = −1

2
λ2z∗z where λ2 = meω

2
0�

2
0. (54)

�0 =
(

h̄

meωc

)1/2

=
(

h̄c

eB

)1/2

(55)

is the magnetic length and z is measured in units of �0. The wave function will be taken to be
that of Laughlin for a single electron [10]. We thus take

ψm(z) = z|m| (56)

where |m| has been used rather than m, since m takes negative values in Asselmeyer and Keiper
[6]. It, consequently, follows by using (5) that

V̂ ψm(z) = −λ2 d

dz
z|m|+1 = −meω

2
0�

2
0(|m| + 1)ψm = −h̄ω2

0

ωc

(|m| + 1)ψm. (57)

Accordingly,

E0,m = h̄ωc

[
1

2
− ω2

0

ω2
c

(|m| + 1)

]
. (58)

The above result differs from the result of Asselmeyer and Keiper [6] (equation (52)).
Moreover, for a numerical comparison we take

ωc

ω̃
= 5

4
and thus

ω0

ωc

= 3

10
. (59)

Therefore,

E0,−3 = 7

40
h̄ω̃ E0,−4 = 1

16
h̄ω̃. (60)

The corresponding results of Asselmeyer and Keiper [6] are

E′
0,−3 = 1

8
h̄ω̃ E′

0,−4 = 0. (61)
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The difference between the two sets of results is due to the fact that they stand for two different
states represented by two different wave functions. In Asselmeyer and Keiper [6], the wave
function is given by


 ′
0,m = z|m| exp

[−|z|2
4�′ 2

0

]
�′

0 =
√

h̄

meω̃
(62)

while in Girvin and Jach [4], it is given by the usual lowest-Landau-level wave function:


0,m = z|m| exp

[−|z|2
4�2

0

]
�0 =

√
h̄

meωc

. (63)

5. Conclusions

The extensions considered for the theory of the projection of the potential energy onto the lowest
Landau level have yielded important new results for both the disk and spherical geometries,
regarding the energy of quasi-holes and quasi-electrons and the energy gap. The results have
confirmed that the Laughlin wave function is an exact eigenfunction of the harmonic inter-
action, unlike the quasi-hole and quasi-electron wave functions. For spherical geometry we
have further introduced an exact procedure to obtain the projection operator from the form of
the potential energy. The procedure has been applied for the harmonic, for the 1/r2 and for
the Coulomb potentials.

The results displayed in section 4 showed further that the two approaches of general
composite particles and of the projection of the potential term onto the lowest Landau level
represent two different ground states.
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